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Abstract. The structure of Be and C isotopes are investigated based on the molecular-orbit (MO) model.
The low-lying states are characterized by several configurations of valence neutrons, which are constructed
as combinations of basic orbits. In 10Be, all of the observed positive-parity bands and the negative-parity
bands are described within the model. The second 0+ state of 10Be has a large α-α cluster structure, and
this is characterized by a (1/2+

σ )2 configuration. An enlargement of the α-α distance due to two-valence
neutrons along the α-α axis makes their wave function smooth and reduces the kinetic energy drastically.
Furthermore, the contribution of the spin-orbit interaction due to coupling between the Sz = 0 and the
Sz = 1 configurations, is important. In the ground state of 12Be, the calculated energy exhibits similar
characteristics, that the remarkable α clustering and the contribution of the spin-orbit interaction make
the binding of the state with (3/2−

π )2(1/2+
σ )2 configuration properly stronger in comparison with the closed

p-shell (3/2−
π )2(1/2−

π )2 configuration. This is related to the breaking of the N = 8 (closed p-shell) neutron
magic number. Also, the molecule-like structure of the C isotopes is investigated using a microscopic
α+α+α+n+n+· · · model. The combination of the valence neutrons in the π- and the σ-orbit is promising
to stabilize the linear-chain state against the breathing and bending modes, and it is found that the excited
states of 16C are the most promising candidates for such structure.

PACS. 21.10.-k Properties of nuclei; nuclear energy levels – 21.60.Gx Cluster models

1 Introduction

Numerous experiments using unstable nuclear beams have
succeeded in extending the observed neutron drip line,
and various features of β-unstable nuclei have been re-
vealed [1,2]. To discover new isotopes and exotic proper-
ties of weakly bound nuclei requires drastic changes in our
understanding of the nuclear structure. For example, neu-
tron halo structures in 6He, 11Li, 11Be, 14Be, 17B and 19C
suggest a breaking of the density saturation due to weakly
bound neutrons [3]. Anomalous is not only the halo struc-
ture of weakly bound neutrons, but also the change of the
shell structure. Experimental results show that the num-
ber of neutrons in the drip line isotopes of p-shell nuclei Be
and B go beyond the magic number N = 8 (14Be, N = 10
and 19B, N = 14). In these nuclei, neutrons occupy orbits
in higher shells (sd-shell for Be). Since nuclei near to the
drip line are weakly bound systems, energy gaps between
the shells become small. Recently, contributions of such
higher shells were analyzed in N = 8 nuclei. A calculation
based on the shell model has shown that the slow β-decay
of 12Be to 12B can be explained by an admixture of the
sd-shell in 12Be (N = 8) in which the closed p-shell com-
ponent must be less than 30% [4]. This shows that the
concept of magic numbers is vague in 12Be.

In the case of light nuclei, it has been shown that clus-
ter structure appears in the vicinity of a threshold en-
ergy [5,6]. This model is an important candidate for ex-
plaining shell-structure anomalies. In Be and B region,
α-α structure is well established, and especially in 9Be,
a microscopic α+α+n model has reproduced the prop-
erties of low-lying states [7,8]. In 10Be, the microscopic
α-cluster model has also been applied [9,10], and a devel-
oped cluster structure in the excited states was considered.
According to this analysis of 9Be, the α-α cluster structure
of the core can reproduce not only natural parity states,
but also the famous anomalous parity 1/2+ state at low
energy [7,8]. It has been shown that the density of the
1/2+ state is polarized along the α-α axis, so that there is
a strong mixing of the s-wave and the d-wave component.
The ratio of the spectroscopic factors S1/2+

[s1/2 × 8Be
(0+)] and S1/2+

[d5/2 × 8Be (2+)] is 0.79 : 0.30 [8]. This
polarization of the neutron density due to the α-α core
is an important mechanism to make the 1/2+ state low
lying. This strong-coupling feature of the 1/2+ state can
be qualitatively interpreted in terms of deformed models
as the [220] expression in the Nilsson diagram.

The intention of the present work was to analyze the
structure of Be isotopes systematically beyond N = 8 and
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to understand recent experimental data, including excited
states based on the molecular-orbit (MO) model [11,12].
There have been pioneering studies for Be isotopes based
on the MO model [9,10,13], where the properties of the
low-lying states were qualitatively described, including the
development of the α-α cluster structure in the excited
states. However, to perform a systematic analysis of the
structure of Be isotopes quantitatively over a wide energy
range (∼ 10 MeV), it is necessary to thoroughly improve
the models. Here, we present a new framework in which
the model space for valence neutrons are vastly extended.

Furthermore, the molecule-like structure of the
C isotopes is investigated using a microscopic
α+α+α+n+n+. . . model. Recently, the discussions
of the well-developed cluster structure are extended to
the neutron-rich nuclei, and the role of valence neutrons
which stabilize the linear-chain structure has been
pointed out. For example, von Oertzen has extended his
analyses for the molecular structure in Be isotopes [14]
to C isotopes, and the linear-chain state consisting of 3α
and valence neutrons around it has been speculated. Even
if the 3α-system without valence neutrons (12C) does
not have a linear-chain structure, the valence neutrons
around it are expected to increase the binding energy and
stabilize the linear-chain state.

2 Models

The total wave function of a microscopic α+α+n+n . . .
model for the Be isotopes is fully antisymmetrized and
expressed by a superposition of basis states centered to
different relative distances between the α-clusters (d) with
various configurations of the valence neutrons (c1, c2 . . .)
around the α-clusters:

ΦJ
MK =

∑
d,c1,c2··

P J
MKA[φ(α)

1 φ
(α)
2 (φc1

1 χ1)(φc2
2 χ2) · ··]. (1)

The projection to the eigenstates of angular momentum
(P J

MK) is performed numerically. Each α-cluster consist-
ing of four nucleons is described by Gaussians (Gαi) cen-
tered at Rαi and spin-isospin wave function(χ):

φ
(α)
i = Gp↑

Rαi
Gp↓

Rαi
Gn↑

Rαi
Gn↓

Rαi
χp↑χp↓χn↑χn↓, i = 1, 2

(2)

GR =
(

2ν

π

) 3
4

exp[−ν(r − R)2], ν = 1/2β2, (3)

where, the oscillator parameter (β) is equal to 1.46 fm. For
the linear-chain state, the values of {Rαi} are −d/2 and
+d/2 on the z-axis. Each valence neutron (φci

i χi) around
the α-α core is expressed by a linear combination of local
Gaussians:

φci
i χi =

∑
j

gjGRj
χi. (4)

These valence-neutron orbits are classified according to
the MO picture [13]. The orbit of the valence neutron per-
pendicular to the z-axis of the α-α core is called π-orbit,

and one along the z-axis is called σ-orbit. The antisym-
metrization imposes the forbidden space for the valence
neutrons; the π-orbit must have at least one node perpen-
dicular to the z-axis, and the σ-orbit must have at least
two nodes since two α-clusters along the z-axis already
occupy the orbitals with nz = 0, 1.

In the present framework, each valence-neutron orbit
is introduced to have a definite Kπ value at the zero limit
of centers of local Gaussians ({Rj}) describing the spatial
distribution of the orbit. The precise positions of {Rj} are
determined variationally before the angular-momentum
projection. Since the values of {Rj} are optimized to be
finite, the orbits are not exactly the eigenstate of Kπ,
and are labeled as K̄π. For the π-orbit with K̄π = 3/2−
(|3/2−π 〉), the spatial part and the spin part of K̄ are de-
fined to be parallel (rY11|n ↑〉), for which the spin-orbit
interaction acts attractively. At the same time, |3/2−π 〉 is
described as a linear combination of two orbits centered
at the right- and left-hand side of the system based on the
MO picture:

|3/2−π 〉 =
1√
Nπ

{(px + ipy)+a + (px + ipy)−a}|n ↑〉, (5)

(px)±a = G±aez+bex
− G±aez−bex

, (6)

(py)±a = G±aez+bey
− G±aez−bey

. (7)

Here, (px +ipy)±a denotes the orbit centered at ±a on the
z-axis, and these variational parameters a and b are op-
timized by using the Cooling Method in antisymmetrized
molecular dynamics (AMD) [15–17] for each basis state.
Furthermore, the |1/2−π 〉 orbit, where the spin-orbit inter-
action acts repulsively, can also be defined by changing
the spin direction of |3/2−π 〉, where the spatial part and
the spin part of K̄ are antiparallel (rY11|n ↓〉):

|1/2−π 〉 =
1√
Nπ

{(px + ipy)+a + (px + ipy)−a}|n ↓〉. (8)

The distribution of the σ-orbit is just along the α-α axis,
then it is introduced to have two nodes. |1/2+

σ 〉 is repre-
sented as a linear combination of two orbits with K̄ = 1/2,
whose centers are +a and −a on the z-axis:

|1/2+
σ 〉 =

1√
Nσ

{(pz)+a − (pz)−a}|n ↑〉, (9)

(pz)±a = Gaez+bez
− Gaez−bez

. (10)

These three orbits (|3/2−π 〉, |1/2−π 〉 and |1/2+
σ 〉) are the

basic building blocks for the molecular-orbital structure.
Also, |−3/2−π 〉, |−1/2−π 〉 and |−1/2+

σ 〉 orbits are introduced
by taking the time reversal of |3/2−π 〉, |1/2−π 〉, and |1/2+

σ 〉
orbits, respectively.

For C isotopes, MOs are introduced around 3α-
clusters, and in this case, the σ-orbit must have at least
three nodes since three α-clusters along the z-axis already
occupy the orbitals with nz = 0, 1, 2.

The Hamiltonian and the effective nucleon-nucleon in-
teraction are the same as in refs. [11,12], and parameters
of Volkov No. 2 [18] for the central part and the G3RS
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spin-orbit term [19] for the spin-orbit part are determined
from the α + n and n + n scattering phase shifts, and the
binding energy of deuteron is also reproduced with these
parameters.

3 Results

3.1 Molecular structure in Be isotopes

In this subsection, we present the results for the Be
isotopes. The basis states are combined using the Gen-
erator Coordinate Method (GCM). The energy levels of
10Be are calculated with the bound-state approximation.
Three 0+ states appear. Their dominant valence neutron
components are (3/2−π )2 for the ground state, (1/2+

σ )2
for the second 0+ state, (1/2−π )2 for the third 0+ state.
The total energy of the ground state is calculated to
be −61.4 MeV, which corresponds to −7.3 MeV with
respect to α+α+n+n threshold (the experimental value
is −8.4 MeV). The 0+

2 state and the 0+
3 state are

obtained at excitation energies of 8.1 MeV and 11.6
MeV, respectively. From the ground and the second
0+ states, the Kπ = 0 rotational bands are formed
as i) 0+

1 (0.0MeV)–2+
2 (3.3MeV)–4+

1 (10.7MeV) and
ii) 0+

2 (8.1MeV)–2+
3 (9.5MeV)–4+

2 (12.5MeV). The level
spacing of 0+

1 –2+
1 is 3.3 MeV, which nicely corresponds

to the experimental value in 10Be (3.37 MeV), which is
almost comparable with the case of 8Be (∼ 3MeV). On
the contrary, the second 0+ band has a very large moment
of inertia, more than twice that of the ground state. The
second 2+ state at 5.8 MeV (exp. 6.0 MeV) and the 3+

state at 9.6 MeV consist mainly of Kπ = 2+ components,
and the 1+ state at 10.1 MeV and 2+

4 state at 11.2 MeV
are dominantly the Kπ = 1+ (spin-triplet) components.

The experimentally observed levels clearly be reas-
signed to the ground-state rotational band (0+

1 , 0.0 MeV–
2+
1 , 3.4 MeV–4+

1 , 11.3 MeV). For the second 0+ band, the
0+
2 and the 2+

3 states are observed at 6.3 MeV and 7.5 MeV
respectively, and a candidate for the 4+ state of this
band, whose cluster structure is recently discussed [21],
is 10.2 MeV. All of these observed levels have a nice cor-
respondence with the present calculated results.

The second 0+ state has a much larger charge radius
(2.93 fm, proton radius 0.813 fm is used) than the ground
state (2.51 fm), which is a signature of the developed α-α
structure. As for the configuration of this state, the result
based on the shell model supports that valence neutrons
occupy not the p-orbit, but the sd-orbit. In the Cohen-
Kurath model [20], where all the configurations in the
p-shell are taken into account, the excitation energies of
the first and the second 2+ states almost agree with the
experimental values (2+: 3.7 MeV and 2+: 5.4 MeV, ex-
perimentally 3.4 MeV and 6.0 MeV, respectively). How-
ever, the second 0+ state is put at 12.35 MeV. This en-
ergy is about twice the observed excitation energy of 0+

2

(6.263 MeV). This result implies that the 0+
2 state (band

head of cluster band) cannot be understood within the
p-shell and the contributions of sd-shells are required.

The negative-parity states are also calculated. In ad-
dition to reproducing the four observed states (1−, 2−,
3− and 4−), we predict a second 2− state and a second
3− state. The presence of two states for each Jπ is due
to a coupling effect between two bands: Kπ = 1− and
Kπ = 2−. In the Kπ = 1− band, a valence neutron for
the π-orbit and one for the σ-orbit have opposite spin di-
rections (Sz = 0), and in the Kπ = 2− band, they have
the same spin direction (Sz = 1). Since the energies of
these two bands are close and the coupling between them
is strong, there is no clear band structure for the negative-
parity states.

Both the calculated and the experimental results re-
flect this K-mixing effect, and the level spacing between
the 1− state and the 2− state is very small. If we re-
strict ourselves to only K = 1, 1− is found at −53.0 MeV
and 2− at −52.0 MeV. The level spacing is more than
1 MeV. However, for the 2− state, the band head of the
K = 2− band is at −51.6 MeV, and the coupling is very
strong. Therefore, when we perform K-mixing, the level
spacing between these two states becomes much smaller
(−53.4 MeV for 1−, −53.5 MeV for 2−). Since K = 2 is
a spin-triplet, this 2− state has a strong admixture of the
K = 1 component and the K = 2 component, just like in
the so-called spin vibrational state.

We must notice that the spin-orbit interaction is shown
to strongly contribute for the second 0+ state, when spin-
triplet states for the valence neutrons are included among
the basis states. If the 1/2+ orbit is the pure s-orbit, natu-
rally there is no contribution of the spin-orbit interaction.
In Be isotopes, the orbit is not spherical but it contains
the d-orbit component. However, the spin-orbit interac-
tion again vanishes, when the two valence neutrons oc-
cupy along the α-α axis, since two neutrons with the same
spatial distribution construct only the spin-singlet state.
This has been the situation in traditional MO models [9,
10]. When one of the valence neutrons deviates from the
α-α axis, the spin-triplet state can be constructed, and the
spin-orbit interaction strongly acts between this state and
the original (1/2+

σ )2 configuration with spin-singlet. The
calculated second 0+ energy shows that the smaller is the
α-α distance, the larger is the contribution of the coupling
with the spin-triplet state. When the α-α distance is 5 fm,
the coupling of S = 1 to the original (1/2+

σ )2 increases the
binding energy by about 3 MeV, however, when the α-α
distance is 3 fm, the coupling increases the binding en-
ergy by about 4.5 MeV. Therefore, the coupling with the
spin-triplet becomes stronger as the α-α distance becomes
small.

Next, the large contribution of this spin-orbit interac-
tion is discussed concerning 12Be. In 12Be, four valence
neutrons rotate around two α-clusters and, mainly, two
configurations are important for the 0+ ground state. One
is (3/2−π )2(1/2−π )2 for the four valence neutrons, which cor-
responds to the closed p-shell configuration of the neutrons
at the zero limit of the α-α distance. The other configura-
tion is (3/2−π )2(1/2+

σ )2, where two of the four valence neu-
trons occupy the σ-orbit. We compare the energy of these
two configurations as a function of the α-α distance. When
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it is small, for example 2 fm, the dominant configuration of
the four valence neutrons is (3/2−π )2(1/2−π )2 for the ground
state. On the other hand, the (3/2−π )2(1/2+

σ )2 configura-
tion for the four valence neutrons becomes lower as the
α-α distance is increased. Due to the spin-orbit coupling,
the energy is almost the same as that of (3/2−π )2(1/2−π )2,
corresponding to the closed p-shell configuration. Further-
more, the energy of (3/2−π )2(1/2+

σ )2 is suggested to be-
come even lower than (3/2−π )2(1/2−π )2 when the pairing
effect between (3/2−π )2 and (1/2−π )2 is taken into account.
These effects play crucial roles in accounting for breaking
of the N = 8 magic number.

3.2 Molecular structure in C isotopes

In this subsection, the MO approach introduced for the
Be isotopes is applied to a study of C isotopes. The sta-
bility of the linear-chain states (α-α-α linear configura-
tion) against the breathing-like path and the bending-like
path are shown to be increased by adding valence neutrons
around a 3α-core.

We show the calculated results for the stability of the
linear-chain state for various configurations. The isotopes
and configurations which we take into account are 12C,
14C(3/2−π )2 (two n’s in the π-orbits), 14C(1/2−σ )2 (two n’s
in the σ-orbits), 16C((3/2−π )2(1/2−π )2) (four n’s in the π-
orbits) and 16C((3/2−π )2(1/2−σ )2) (two n’s in the π-orbits
and two n’s in the σ-orbits). Two variational paths are
introduced corresponding to the breathing-like and the
bending-like degrees of freedom. The parameters d and θ
stand for the α-α distance and the bending angle of the
3α-core, respectively.

Firstly, we show the 0+ energy curves for the linear-
chain structure against the breathing path. It is found
that the energy pocket around d = 3 fm (parameter d
describes the α-α distance) becomes deeper as the in-
crease of number of valence neutrons in the π-orbit (12C
→ 14C(3/2−π )2 → 16C((3/2−π )2(1/2−π )2)). The 3α-system
(12C) has minimal energy around d = 3.5 fm, however,
this is too shallow to conclude the stability of the linear-
chain state. On the contrary, in 14C(3/2−π )2, there appears
evident minimal energy around d = 3 fm. The energy
(∼ −82 MeV) is lower than 12C by 11 MeV and the en-
ergy pocket is much deeper. This energy corresponds to
the excitation energy of 18 MeV from the ground state
calculated with an equilateral-triangle configuration for
the 3α-core. 16C((3/2−π )2(1/2−π )2) is most stable among
these states and it has an energy pocket of ∼ −86 MeV,
and the corresponding α-α distance is d = 2.5 fm, shorter
than 12C and 14C(3/2−π )2. Therefore, the π-orbit is found
to stabilize the linear-chain structure as the increase of
valence neutrons and to prevent a breathing-like break-up
of the system.

Next, we discuss the case where the valence neutrons
occupy the σ-orbit. 14C(1/2−σ )2 has an excitation energy
higher by about 14 MeV in comparison with 14C(3/2−π )2.
It is rather surprising that the difference is only 14 MeV
in spite of the fact that 3/2−π has only one node and 1/2−σ
has three nodes. This is because the σ-orbit is along the

α-α-α core: The higher nodal orbits along the symme-
try axis become low lying as a result of the clustering
of the core. The σ-orbit enhances the prolonged shape of
the 3α-core, and the optimal d-value is ∼3.5 fm. How-
ever, the 14C(1/2−σ )2 case has no deep pocket enough
to be stabilized against the breathing-like path. When
two more valence neutrons occupy the π-orbit, although
this minimal energy is higher by 5 MeV than that of
16C((3/2−π )2(1/2−π )2), 16C((3/2−π )2(1/2−σ )2) has the min-
imal 0+ energy of ∼ −81 MeV. The calculated energy
pocket is deep enough to guarantee the stability for the
breathing-like path.

Finally, the stability of these linear-chain states against
the bending-like path is examined (parameter θ de-
scribes the bending angle of α-α-α). Except for the
case of the 16C((3/2−π )2(1/2−σ )2) configuration, the cur-
vature of these states is rather monotonic and the en-
ergy minimum does not clearly appear. However, the
16C((3/2−π )2(1/2−σ )2) case shows a sharp increase of the 0+

energy as the increase of the bending angle and is found
to be stable against the bending-like path. This feature
is much different from 12C, 14C((3/2−π )2), 14C((1/2−σ )2),
and 16C((3/2−π )2(1/2−π )2) cases.

16C((3/2−π )2(1/2−σ )2) is found to be only the case
which is stable against both the breathing- and the
bending-like path. The 0+ energy increases by 15.7 MeV
from θ = 0◦ (exact linear-chain) to θ = 30◦, in which
the kinetic energy part is 10.3 MeV. To understand the
energy increase with the increase of the bending angle θ
of this case, we calculate and compare the overlap be-
tween the wave functions with θ = 0◦ and θ = 30◦ for
various configurations. In 12C, the wave functions with
θ = 0◦ and θ = 30◦ have the squared overlap of 0.91, and
14C((3/2−π )2) has almost the same value. 14C((3/2−σ )2) has
the value of 0.85, smaller than 14C((3/2−π )2) by only 6%,
and 16C((3/2−π )2(1/2−π )2) has almost the same value as the
14C((1/2−σ )2) case. This result shows that the overlaps ad-
ditionally decrease a little for the σ-orbital neutrons, and
also for the π-orbital neutrons as the increase of the va-
lence neutrons. In spite of these, the overlap between θ =
0◦ and θ = 30◦ for the 16C((3/2−π )2(1/2−σ )2) case, shows a
significantly large decrease to 0.60. 16C((3/2−π )2(1/2−σ )2)
is only the configuration which shows drastic decrease of
the overlap between θ = 0◦ and θ = 30◦.

As discussed in following part, it can be known that the
drastic decrease as the increase of the bending angle is due
to the increase of the overlap between two neutrons in the
π-orbit and two neutrons in the σ-orbit. When the overlap
between them increases, the overlap component in the to-
tal wave function is diminished due to the Pauli exclusion
principle, that is, the so-called Pauli blocking. Therefore,
the physical state can be expressed by the modified wave
function which is made by subtracting the overlap com-
ponent from the original wave function. Since the energies
of the π- and the σ-orbits discussed here are relatively
low, the modified wave function involves larger compo-
nents of higher excitation energy in comparison with the
wave function at θ = 0 free from the Pauli blocking. As a
result, the Pauli blocking due to the increase of the over-



N. Itagaki et al.: Molecular-orbital structure in neutron-rich Be and C isotopes 47

lap between four valence neutrons is considered to bring
the increase of the energy proportional to the decrease of
the squared overlap. This is a possible explanation for the
rapid increase of the energy against the bending angle.

4 Conclusion

The structure of Be isotopes has been investigated using
the α+α+n+n · · model, where the orbits for the valence
neutrons have been introduced based on the molecular-
orbit (MO) model. All of the low-lying positive- and
negative-parity states of 10Be have been clearly described
by combinations of three basic orbits for the valence neu-
trons around the two α-clusters. These orbits originate
from the low-lying 3/2−, 1/2+ and 1/2− states in 9Be.
We have studied the behavior of the α-α core for each
configuration of the valence neutrons.

In 10Be, the ground state and the third 0+ state are
characterized by the π-orbit of the valence neutrons. The
second 0+ state has a large α-α distance, which is char-
acterized by the σ-orbit. The two valence neutrons stay
along the α-α axis (the 1/2+ orbit) and reduce the ki-
netic energy by enhancing the α-α distance. A large E2
transition probability between states which belong to a ro-
tational band (0+

2 , 2+
3 , 4+

2 ) is a signature for the presence
of such states.

The binding mechanism of the second 0+ state other
than the enlargement of α-α distance has also been dis-
cussed. The contribution of the spin-orbit interaction due
to the coupling between the Sz = 0 and the Sz = 1 con-
figurations is important for the state.

This coupling between the spin-singlet and the triplet
basis states is also important in the case of 12Be. Without
the spin-triplet basis state, the energy of the configuration
(3/2−π )2(1/2+

σ )2 is much higher than that of the closed
p-shell configuration ((3/2−π )2(1/2−π )2) by 4 MeV. How-
ever, the energy of (3/2−π )2(1/2+

σ )2 is drastically decreased
by coupling with the spin-triplet states. This is because
the effect becomes stronger as the α-α distance becomes
shorter, and 12Be has an optimal α-α distance around
3 fm, which is smaller than the second 0+ state of 10Be by
1 fm. The study shows that an energy of (3/2−π )2(1/2+

σ )2
is almost the same as (3/2−π )2(1/2−π )2, or even lower. This
effect is suggested to play a crucial role in accounting for
the dissipation of the N = 8 magic number in 12Be. It is
an interesting subject to analyze the binding mechanism
and properties of the ground state by taking into account
the pairing mixing among states with configurations of
(3/2−π )2(1/2−π )2, (3/2−π )2(1/2+

σ )2, and (1/2−π )2(1/2+
σ )2. A

detailed analysis is going to be performed not only for
this state, but also for excited states where new states
with cluster structure have been recently observed.

In C isotopes, the stability of the linear-chain state
(α-α-α linear configuration) has been examined. It is
summarized that only the 16C((3/2−π )2)((1/2−σ )2) config-
uration has the simultaneous stabilities for the breathing-
like break up path and for the bending-like path up to 16C.

A combination of the π- and the σ-orbits occupied by four
neutrons plays doubly important roles to make a deep
energy pocket for breathing-like path and to prevent the
bending-like free motion of the α-α-α linear chain. The
band head energy is calculated to be around 25 MeV in
excitation, and is expected to form a rotational band with
an energy slope of �

2

2I = 150 keV.
As further studies, we intend to confirm the stability of

the linear-chain configuration by superposing states based
on generator coordinate method. Also, we are interested
in the similar structure in 18C.
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